Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Zhi-Hong Zou, Hui-Bing Zhang and Wen-Long Huang*

Center of Drug research, China Pharmaceutical University, Nanjing 210009, People's Republic of China

Correspondence e-mail:
ydhuangwenlong@126.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.066$
$w R$ factor $=0.173$
Data-to-parameter ratio $=15.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
2-Chloroacetyl-1-(3,4-dimethoxybenzyl)-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline

In the title compound, $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClNO}_{5}$, there are two independent molecules in the asymmetric unit. The molecules are connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions into one-dimensional chains running in the b-axis direction.

Comment

1-Benzyltetrahydroisoquinoline alkaloids occur widely in plants and have important biological activities. These naturally occurring products provide a basis for the development of therapeutic medicines with cardiovascular effects (Shama, 1972; Neumeyer et al., 1977; Gibson \& Tumbull, 1980). As part of a search for novel potent compounds with antiarrhythmic, calcium antagonistic, antihypertensive, neuromuscular blocking or platelet aggregation inhibitory activities, a series of substitued 1-benzyltetrahydroisoquinoline derivatives has been designed and synthesized (Huang et al., 1990; Xu et al., 1993; Zhang et al., 2003; Wang et al., 2005). N-Aminoacetylated tetrahydroisoquinolines are also useful as intermediates for the synthesis of isoquinoline derivatives. We report here the crystal structure of the title compound, (I).

(I)

There is a chiral C atom (C10) in (I), but the crystal structure is racemic. There are two independent molecules in the asymmetric unit, which has been chosen arbitrarily so that the molecules shown inFig. 1 have opposite absolute configurations. Weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions are observed (geometric details are given in Table 1). The molecules are linked into one-dimensional chains running in the b-axis direction by these $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Experimental

The title compound was synthesized by acylation of tetrahydropapaverine and chloroacetyl chloride in dichloromethane, using anhydrous potassium carbonate as acid absorbing agent (He et al., 1998). Single crystals were obtained by recrystallization from a mixture of ethyl acetate and ethanol (2:1).

Received 1 September 2006
Accepted 19 November 2006
\qquad

Crystal data

$\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{ClNO}_{5}$	$Z=8$
$M_{r}=419.89$	$D_{x}=1.339 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	Mo $K \alpha$ radiation
$a=16.380(3) \AA$	$\mu=0.22 \mathrm{~mm}^{-1}$
$b=15.396(3) \AA$	$T=293(2) \mathrm{K}$
$c=16.536(3) \AA$	Block, colourless
$\beta=92.24(3)^{\circ}$	$0.40 \times 0.40 \times 0.20 \mathrm{~mm}$
$V=4167.0(14) \AA^{3}$	

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.918, T_{\text {max }}=0.958$
8446 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.066$
$w R\left(F^{2}\right)=0.173$
$S=1.02$
8155 reflections
524 parameters
H -atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 20-\mathrm{H} 204 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.96	2.51	3.383 (4)	152
$\mathrm{C} 22-\mathrm{H} 22 A \cdots \mathrm{O} 8^{\text {ii }}$	0.97	2.57	3.400 (4)	144
$\mathrm{C} 22-\mathrm{H} 22 A \cdots \mathrm{O} 9^{\text {ii }}$	0.97	2.35	3.241 (4)	153
$\mathrm{C} 44-\mathrm{H} 44 B \cdots \mathrm{O} 3^{\text {iii }}$	0.97	2.40	3.272 (4)	149
$\mathrm{C} 44-\mathrm{H} 44 \mathrm{~B} \cdots \mathrm{O} 4^{\text {iii }}$	0.97	2.42	3.270 (4)	147

Symmetry codes: (i) $x, y-1, z$; (ii) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{1}{2}$; (iii) $-x+\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2}$.
All H atoms were located in a difference Fourier map and allowed to ride on their parent atoms at distances of 0.93 (aromatic), 0.96 (methyl) and $0.97 \AA$ (methylene), with $U_{\text {iso }}(\mathrm{H})$ values of 1.2 or 1.5 times $U_{\text {eq }}$ of the parent atom.

Data collection: CAD-4 Software (Enraf-Nonius, 1985); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figure 1
The asymmetric unit of the title compound, showing the atomic labelling. Displacement ellipsoids are drawn at the 50% probability level.

We are grateful for financial support by the National Natural Science Foundation of China (No. 30070861).

References

Enraf-Nonius (1985). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Gibson, E. P. \& Tumbull, J. H. (1980). J. Chem. Soc. Perkin Trans. 2, pp. 16961700.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
He, L. W., Huang, W. L., Gao, H. \& Peng, S. X. (1998). Chin. J. Med. Chem. 29, 196-198.
Huang, W. L., Song, X. Q. \& Peng, S. X. (1990). Acta Pharmacol. Sin. 25, 815818.

Neumeyer, J. L., Perianayagam, C. J. \& Ruchirawat, S. (1977). J. Med. Chem. 20, 894-898.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Shama, M. (1972). The Isoquinoline Alkaloids, pp. 194-228. New York, London: Academic Press.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Wang, Z. Y., Wang, C. Z., Wang, F. X. \& Yang, J. (2005). Chin. J. Pharm. 36, 261-263.
Xu, G. Y., Peng, S. X. \& Hua, W. Y. (1993). J. China Pharm. Univ. 24, 193-196.
Zhang, C., Tang, X. X. \& Huang, W. L. (2003). J. China Pharm. Univ. 34, 7-12.

[^0]: © 2006 International Union of Crystallography All rights reserved

